
WNCURRENTFAULT DETECIION IN P8
THE ATALLAH K0SARAJI.J DICTIONARY MACHINE*

Marc D. Spudding

Mhvira j Banerjee

Computet Systems Group
Coordinated Science Laboratory

University of Illinois
1101 W. Springfield Av.

Urbana, IL-61801
(217) 333-6564

(h A S A - C R - 1 8 1 G 4 3) C C Y C U B R E P S EAULl DETECTION
I h 'LEE A I A L L A B F O Z B B A J C DICIICbAEY EACHXYE
(I l l i n o i s U n i w ,) 8 p A v a i l : LZIS

N87-7 C455

Unclas
00/60 0079399

This research wu supported in part by the National Aeronautia and S p a Administration under Contract NASA
NAG 1-613.

1

1. INTRODUCI'ION

Recently, a number of treestructured multiprocessor designs have been proposed [1.2.3,41

for performing operations on a dictionary data structure which consists of a set S of data elements.

each of which is composed of a key-record pair 1y =(A 7). Hae A is the key used for searching the

data element K and t is the record associated with it. The common operations supported by a dic-

tionary machine are: 'Insert' adds an element to S, 'Delete' removes an existiig element from S ,

'Member' (or 'Find') determines if a certain element belongs to S. 'Extract-Minimum' and

'Extract-Maxiium' determine the elements of S with minimum and maximum key values respec-

tively then remove that element and 'Near' obtains the element with the key value nearest to a

given key.

The number of processars needed to support dictionary operations on a large database tends to

be quite large if extremely fast processing of instructions is desired. The large number of proces-

sors in a system make it more vulnerable to failures. hence it is desirable to have some fault toler-

ance built into a system. Traditionally. fault tolerance using dynamic redundancy has been viewed

as consisting of two parts: 1) fault detection/ location and 2) subsequent reconfigutation of the sys-

tem around the fault. Most of the work in fault tolerance in tntstructund multiprocessors have

addressed the second aspect, namely that of reconfiguring the system after a fault has been detected

[S. 6.7.81.

The mechanism to dekct/locate a faulty processor is assumed to be performed by periodic

testing which, unfortunately, is not applicable for detecting transient or intermittent failures.

Hence there is a need to build some concurrent fault detection mechanism into complex systems

designed for critical applications. In this paper we present a single fault-secure (transient and per-

manent) version of the dictionary machine proposed by Atallah and Kosaraju [3]. The fault-secure

technique assures detection of the failure of any PE before incorrect results are output. given that

only cne PE fails at once. The addition of fault security to the machine requires that a small

amount of hardware be added: one PE. a comparator and the doubling of the number of data regis-

2

tus in the system. The performance of the fault secure machine is not degraded since it maintains

the O(1og n) response time (n - number of records stored) and the pipelined nature of the

machine.

2. BEVIEW OF THE ATALLAH-KWARAJU DICI'IONARY MA-

We describe here some of the aspects of the Atallah-Kosataju dictionary machine in order to

make the fault security techniques and the reasons for the required hardware additions clear. For

a more extensive description of the machine. the reader is referred to [3].

The machine consists of a binary tree of PES with communication occurring only between

father and son nodes of the tree. Each PE contains 3 registers (left. middle, right) in which key-

record (k,r> pairs are stored. The root PE handles all VO for the machine, since all instruction

input and machine responses come through the root node. The PES are numbered in breadth-!kst

order and each PE is aware of its number. We denote n to be the number of (k r) pairs currently

stored in the machine; this number is known to each PE.

Operations on the tree are handled so as to maintain the (kr) pairs in a particular

configuration. The tras in Fig. 2a show examples of this configuration. A preorder traversal of the

tree will always yield a list of the (k 7) pairs sorted in nscending order by key value. Every PE

contains either three (k r) pairs or none, with the exception of the PE with address - 1: I which

has (n modulo 3) pairs. With this storage system the root PE always contains the minimum and

the maximum (A r) pairs in its left and right data registers respectively. The PES which are on

the same level of the tree as the PE with p I[n modulo 31 key-record pairs constitute the current

last level of the tree. PES below this level do not take part in the machine's operation until more

records are added.

Instructions are input a t the root in a pipelined fashion and processed by all PE's in a given

level at a time. If a response to an instruction is required it is generated by the concerned PE and

sent downward in the tree. This response will travel downward until it reaches the last level of

1

3

the tree, when it will be nflccted to travel upward to be output by L e root. This procedure

preserves the correct order of responses.

Examples of the insertion process are shown in Fig. 2a. In the insertion (deletion) of a (k r)

pair one PE will increase (decrease) its number of (k 3 pairs: this PE will always be on the last

level of the tree and is referred to as the INCR (DECR). The rest of the PES effected by the opera-

tion will either move each of their (k r) pairs into its succtssof's (next larger key) or predecessor's

(next smaller key) position in the tree. depending on the actual situation. The INCR and DECR PES

provide the "slack" in the chain of (A J pairs needed to allow insertion or deletion of a (A 3 pair

from the tree

The movement of (kr) pairs to successor or predecessor positions, in response to a Delete.

Insert or Extract instruction, provides t t 2 only mechanism through which (k r) pairs in one sub-

tree of the root may move into the other subtree. It is important to note that such movement

requires that the (k r) pair pass through the middle register of the root as this fact is key in

developing a fault secure machine.

3. CONCURIWNT FAULT DETEcIlON SCHEME

The fault secure technique is dependent upon the preorder storage of the (k r) pairs in the

tree and the manner in which that storage scheme is maintained when Inserts. Deletes and Extrac-

tions are issued. k order to make the machine fault secure (for 1 PE failure at a time) we add an

additional set of three (A r pair reg* to each PE. Also, we add an additional root PE and a

comparator. The extra registers and root PE are used to store a sccond chain of (A 3) pairs in the

tree. The placement of the extra chain is a mirror image of the original chain. Fig. 1 shows the

fault secure machine with both chains of (k r) pairs in evidence. We have essentially two trees of

stored (k r) pairs supported by the same hardware, one the mirror of the other (call them T and

TM). For example, PE X2 stores keys 2, 6 uld 10 for tree T, and 16.15 and 12 for tree TM.

whereas PE #3 stores keys 12. 15. 16 for tree T, and keys 10.6 and 2 for tree TM. Note that PE

#4 and PE X 7 have identical middle register contents (-4). PE X4's left register and PE #7's right

. . .
4

register are identical as are their right and left registers respectively. The extra root PE serves as

the root of the mirror tree TM. and both roots receive identical instruction streams and interact

with only one set of the registas contained in PES 2 and 3 (sons of the roots).

The comparator serves two functions. First. the responses of the two roots are compared con-

tinuously. Second. the middle registers of the two roots are compared continuously. Any unequal

comparison result indicates that a PE is faulty within the machine; in the first case erroneous out-

puts are being detected. in the second. erroneous data is being passed from one sub- of the roots

to the other.

If a PE in the normal tree T fails, all responses concerning (k r pairs in that subtree of the

roots are suspect. The mirror tree TM. however, will have all of these same (k r) pairs stored in

the PES making up the other subtree of the roots. Thus any erroneous response generated because

of an erroneous (k r pair or PE in T will be compared to a correct response generated by TM and

thus detected.

This detection method only breaks down when erroneous (k r) pairs migrate from one sub-

tree of the roots to the other. In this way one faulty PE may corrupt both of the versions of a

(A: r pair present in the tree. This eventuality is prevented by the comparison of the middle regis-

ters of the two roots. through which such migrations must occur. Any such migration in T will be

rdected in TM. however. if the (k z) pair is erroneous in one tree it will not be in the other so the

comparator will detect the mor . in Figures 2a and 2b we show how this dual corruption by one PE

can happen. and is detected.

4. CONCL.USIONS

The &aardware we have introduced into the machine has the affect of doubling the time

required by each PE to process an instruction. This causes the pipeline interval and response time

both to double but does not affect the basic O(1og n) nature of the response t h e . nor the O(l)

nature of the pipeline interval found in the original machine. This hardware does not present a

large increase in the amount of system hardware because the PE's are quite complex and a large

number arc likely to be included in any dictionary machine. Thus three extra registers in each PE

will not increase system size prohibitively. Lastly. it is necusary to note that no new techniques

are required to produce a fault secure version of either of the two redundant instruction handling

machines described by Atallah and Kosaraju.

A.K.Somani ani V.K.Agarwal, "An Efficient Unsorte~ VLSI Dictionary Machine." IEEE
Trans. on Gnnputers. vol. C-34. no.9. pp. 841-852. September 1985.
T. A. Ottmann. A. L Rosenberg, and L. J. Stockmeyer, "A Dictionary Machine (for VLSI)."
iEEE T r m . on Computers, voL C-31, no.9. pp. 892-897. September 1982.
M. J. Atallah and S. R. Icosataju. "A G e n e r a l i Dictionary Machine for VLSI," IEEE Truns.
on Compctns. vol. C-34. n0.2. pp. 151-155. Feb 1985.
A.L.Fisher, "Dictionary Machines with a Small Number of Processors." 11th cyvrtlal confer-

C. S. Raghavendm A. Avizienis. and M. Erccgovac, "Fault-Tolerance in Binary Tree Archi-

F. R. K. Chug. F. T. Leighton. and A. L. Rosenberg. "DIOGENES: A Methodology for
Designing Fault-Tolerant V U 1 Ptoctssor Ibrrays." in Roc. 13th Int. Symp. on Fa&-Talerant
Camptaing. pp. 26-32. Jun. 1983.
A. S. M. Hassan and V. K. Agarwal. "A Modular Approach to Fault-Tolerant Binary Tree
Architectures." Aurc. 15th int. Symp. on Fault-Tderant computing, pp. 344-349. June 1985.
B. 0. A. Grey. A. Avizienis. and D. A. Rennels. "A Fault-Tolerant Architecture for Network
Storage Systems," in Roc. 14th Int. Symp. OIL F d - T b a n t Computing. pp. 232-239. Jun.
1984.

- a~ CoPnprctcr Atchi twe. p ~ . 151-156,1984.

t e c t ~ ~ . " in Arrc. 13th Int. S p p . 01(F c r u I t - T d ~ d computing. pp. 360-364, J u . 1983.

z k Z 0 8 0 -

n

W
Y Q :

W
Z

W

n w
K Q
Y > v m

z
0 -
I- o
W
I-
W
0

- / 0

- \ a
v)
I- ? -

c x w c >
0 4
m r

n

z- 2
r-
c N

c 8 Is!

0,
II
Y

a
a
-
a
n
Ly:

Y
W

- \ 0

\ ? BQ
I-
OL
W
v) z

n

c 0

$ CI c

c -
c

w v)

0 4 - a a
Z -
- K

2 5

N - * *
Y b a- (2

x a

w a
W a c

-l3
O K
K K
- 0
0 0

tr)
‘L
W
t.,

n

